This OER textbook is an online text and as Area Coordinator, I plan to use this textbook for GSS 108 – Science of Light and Color in 7 sections throughout the 18-19 academic year. This textbook contains most of the topics taught in the course, and because it is editable, I am able to write the other remaining topics in a customizable textbook. This textbook had the most flexibility as far as me being able to edit as well as having the majority of the topics for the course. Due to this flexibility, I will be using the OER textbook in its entirety for the course this Fall semester, and I will be authoring and adding chapters for the Spring semester. The course capacity for each section ranges from 20 to 24 students. The last textbook that was required of the course was Seeing the Light: Optics in Nature, Photography, Color, Vision, and Holography by David Falk at a cost of approximately $50.

1. **Clarity and comprehensibility - content, including the instructions and exercises**

 Although college students use Light and Matter, I found the topics to be appropriate for a beginning-level science course. The topics includes basic physics terminology and relevant examples for optics and wave theory.

2. **Accuracy - this requires subject matter expertise**

 The subject matter was correct and examples were relevant. The textbook used and defined basic terminology accurately for students. Diagrams were explanatory and the textbook included worked examples of problems. The worked examples were thorough and concise for students to easily follow.
3. **Readability - in terms of logic, sequencing, and flow**
 The textbook was readable for college students and was well organized as to flow smoothly from one concept to the next. The topics build on themselves sequentially, as do most physics textbooks. Discussion questions could build upon worked examples better and include more student examples. Despite this, the textbook is laid out well.

4. **Consistency of course materials - consistency in the content language and use of key terms as is necessary to facilitate understanding by novice users**
 The scientific verbiage is consistent throughout the textbook. It includes a list of terms for students to know. The problems within each chapter promote scaffold learning for students to build their knowledge base.

5. **Appropriateness of content - appropriateness of the material for community college level courses**
 The content is appropriate in scope and sequence for community college level courses. It promotes active learning and proper explanations to the problems at the end of each chapter.

6. **Interface - technological issues such as broken links, improperly displayed graphics, and ease of navigation**
 There were no technological issues, as this textbook was in pdf format. It is easy to download as either chapter or entire textbook. While not all information for the course is included in the textbook (this does however provide many of the topics required), the textbook can be edited easily.
7. **Content usefulness - the ways in which the content could be useful for teachers, students, and those with a general interest in the subject area.**

 The content could be useful for within an introductory level physics course as well as for individual student use outside of class. The instructor can easily select specific chapters for students to use in class. This textbook is also very useful for non-science majors in a general science course, as it is easy to read and well formatted.

8. **Modularity - the ability to adapt, rearrange, add, delete and modify the content by sections**

 This OER is editable and customizable to fit the needs of the course. I like the ability to change the text format and add other resources for an OER that meets the needs of my students and those of other faculty teaching this course. I hope to publish the addendum version in the spring. The course will use at least 51% of the course material in OER format. Since I can edit the textbook, I plan to incorporate our print version of the course workbook into the OER textbook, thus eliminating the print material.

9. **Content errors - the presence or absence of factual errors, grammatical errors, and typographical errors in the content**

 I was unable to locate any factual or grammatical errors in the original version of the textbook.

10. **Reading level - appropriate for community college level students**

 In my opinion, the material is readable for any college level student.

11. **Cultural relevance - use of examples that are inclusive of diverse races and ethnicities**

 N/A, as this is a physics textbook.